computer basics
online shopping

introduction
programming language
environment setup
basic
data type
operator
condition & iteration
number
string
list
tuple
dictionary
set
date & time
function
module

 

Advanced Topics
file formats
-csv
-xml
-json
-ini
db connections
-oracle
-other db
lambda
exception handling
os
pandas
-assignment
-solution

 

programming language

A programming language is a formal computer language designed to communicate instructions to a computer. Programming languages can be used to create programs to control the behavior of a machine or to express algorithms.

In reality, a programming language is just a vocabulary and set of grammatical rules for instructing a computer to perform specific tasks. The term programming language usually refers to high-level languages, such as C/C++,Perl, Java, and Pascal etc. In theory, each language has a unique set of keywords (words that it understands) and a special syntax for organizing program instructions, but we can create many languages that have the same vocabulary and grammar like “Ruby” and “JRuby” or others.
Regardless of what language we use, we eventually need to convert our program into machine language so that the computer can understand it. There are two ways to do this:
Compile the program (like C/C++)
Interpret the program (like Perl)

 

 

compiler

A compiler is a computer program that transforms source code written in a programming language into computer readable language which is a binary code often known as byte code. The most common reason for converting source code is to create an executable program.

The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a lower level language (e.g., assembly language or machine code). If the compiled program can run on a computer whose CPU or operating system is different from the one on which the compiler runs, the compiler is known as a cross-compiler. More generally, compilers are a specific type of translator.
While all programs that take a set of programming specifications and translate them, i.e. create a means to execute those specifications, are technically "compilers", the term generally means a program that produces a separate executable from the compiler (that may require a run time library or subsystem to operate), a compiler that merely executes the original specifications is usually referred to as an "interpreter", although because of differing methods of analyzing what represents compilation and what represents interpretation, there is some overlap between the two terms.
A program that translates from a low level language to a higher level one is a decompiler. A program that translates between high-level languages is usually called a source-to-source compiler or transpiler. A language rewriter is usually a program that translates the form of expressions without a change of language. The term compiler-compiler is sometimes used to refer to a parser generator, a tool often used to help create the lexer and parser. A compiler is likely to perform many or all of the following operations: lexical analysis, preprocessing, parsing, semantic analysis (syntax-directed translation), code generation, and code optimization. Program faults caused by incorrect compiler behavior can be very difficult to track down and work around; therefore, compiler implementors invest significant effort to ensure compiler correctness.

 

 

interpreter

An interpreter is a computer program that directly executes instructions written in a programming or scripting language, without previously compiling them into a machine language program.

An interpreter generally uses one of the following strategies for program execution:
parse the source code.
translate source code into some efficient intermediate representation and immediately execute this.
explicitly execute stored precompiled code made by a compiler which is part of the interpreter system.

Early versions of Lisp programming language and Dartmouth BASIC would be examples of the first type. Perl, Python, MATLAB, and Ruby are examples of the second, while UCSD Pascal is an example of the third type. Source programs are compiled ahead of time and stored as machine independent code, which is then linked at run-time and executed by an interpreter and/or compiler (for JIT systems). Some systems, such as Smalltalk and contemporary versions of BASIC and Java may also combine two and three.[2] Interpreters of various types have also been constructed for many languages traditionally associated with compilation, such as Algol, Fortran, Cobol and C/C++.
 
While interpretation and compilation are the two main means by which programming languages are implemented, they are not mutually exclusive, as most interpreting systems also perform some translation work, just like compilers. The terms "interpreted language" or "compiled language" signify that the canonical implementation of that language is an interpreter or a compiler, respectively. A high level language is ideally an abstraction independent of particular implementations.

 

 

compilers vs interpreters

Object files and static libraries are assembled into a new library or executable Programs written in a high level language are either directly executed by some kind of interpreter or converted into machine code by a compiler (and assembler and linker) for the CPU to execute.
 
While compilers (and assemblers) generally produce machine code directly executable by computer hardware, they can often (optionally) produce an intermediate form called object code. This is basically the same machine specific code but augmented with a symbol table with names and tags to make executable blocks (or modules) identifiable and relocatable. Compiled programs will typically use building blocks (functions) kept in a library of such object code modules. A linker is used to combine (pre-made) library files with the object file(s) of the application to form a single executable file. The object files that are used to generate an executable file are thus often produced at different times, and sometimes even by different languages (capable of generating the same object format).
 
A simple interpreter written in a low level language (e.g. assembly) may have similar machine code blocks implementing functions of the high level language stored, and executed when a function's entry in a look up table points to that code. However, an interpreter written in a high level language typically uses another approach, such as generating and then walking a parse tree, or by generating and executing intermediate software-defined instructions, or both.
 
Thus, both compilers and interpreters generally turn source code (text files) into tokens, both may (or may not) generate a parse tree, and both may generate immediate instructions (for a stack machine, quadruple code, or by other means). The basic difference is that a compiler system, including a (built in or separate) linker, generates a stand-alone machine code program, while an interpreter system instead performs the actions described by the high level program.

A compiler can thus make almost all the conversions from source code semantics to the machine level once and for all (i.e. until the program has to be changed) while an interpreter has to do some of this conversion work every time a statement or function is executed. However, in an efficient interpreter, much of the translation work (including analysis of types, and similar) is factored out and done only the first time a program, module, function, or even statement, is run, thus quite akin to how a compiler works. However, a compiled program still runs much faster, under most circumstances, in part because compilers are designed to optimize code, and may be given ample time for this. This is especially true for simpler high level languages without (much) dynamic data structures, checks or typing.
 
In traditional compilation, the executable output of the linkers (.exe files or .dll files or a library, see picture) is typically relocatable when run under a general operating system, much like the object code modules are but with the difference that this relocation is done dynamically at run time, i.e. when the program is loaded for execution. On the other hand, compiled and linked programs for small embedded systems are typically statically allocated, often hard coded in a NOR flash memory, as there are often no secondary storage and no operating system in this sense.
 
Historically, most interpreter-systems have had a self-contained editor built in. This is becoming more common also for compilers (then often called an IDE), although some programmers prefer to use an editor of their choice and run the compiler, linker and other tools manually. Historically, compilers predate interpreters because hardware at that time could not support both the interpreter and interpreted code and the typical batch environment of the time limited the advantages of interpretation.

 

 
         
 
 
www.000webhost.com